CHESS Architectural Patterns Guide

>

(¥

> CHESS

CHESS Architectural Patterns- Quick Guide

May 2020

CHESS Architectural Patterns Guide

1 Table of Contents

1 Table Of CONLENES «..eeieieeee et ettt et e e sttt e st e e s abe e s bee e s beeebaeesaseesbeeesareesneeas 2
B B T ol U o =Y oL 1Y o T YT UPSSR 3
I [4o Yo [0 4 o] o FO T T PSPPI PROTOUSTTPR 3
3.1 Instantiate an architectural pattern into the system architectureccccocveeviviieeinicen e, 3
3.2 Define @ new architeCtural Patterno e bee e s 6

2 List of Figures

Figure 1. Design Pattern SEIECTION.....coi it e e st e e e st e e e e e sabeee s easees 4
Figure 2. Design Pattern instantiation Wizardcooocuiiiiiciiie e e e e e e e 5
Figure 3. Pattern APPliCatioN i e e e e e e st e e e e s bt e e e e e b ee e e e nabeeeeearees 6
FIBUIre 4. Pattern STIUCTUIE oottt e e s st e e e e e e s s sttt e e e e e e e sesasbtbaaeeesssannnns 6
Figure 5. Pattern Structure, Composite Structure DIiagramcccceeeeiiieiiiiiieeee e eccctrree e e e eeerrrre e e e e e eeenens 7

CHESS Architectural Patterns Guide

3 Document history

Date Changes

May 2020 First version, from user manual

4 Introduction

An architectural pattern is a general, reusable solution to a commonly occurring problem in system
architecture within a given context.

The CHESS tool includes a library of architectural patterns to be instantiated in a model. It is also possible to
create new patterns and so different libraries.

III

A pattern represents “virtual” components instances connected and collaborating in a given way; the goal
of the pattern application process is to identify the actual components instances that will play the roles of
the virtual component instances defined by the pattern.

4.1 Instantiate an architectural pattern into the system architecture

Predefined patterns can be instantiated into a system architecture. Such patterns may defined in the CHESS
library or defined in a given Papyrus project available in the current workspace. A pattern is applicable in
the context of a composite Block, where owned component instances are available, or can be created.

Note: in order to use the patterns instantiation feature, the CHESS constraint “Cannot apply further
profiles in the model” has to be disabled; for the current AMASS platform, this can be done by using the
CHESS preferences page available from the main Eclipse menu “Window -> Preferences”.

In concrete, an architectural pattern can be instantiated in a given CHESS model by applying the following
steps:

1. Open the CHESS model where the pattern must be applied.
2. Open the ModelExplorer view, right click the CHESS root model entity and select:

2.1. Import Registered Package to load the CHESS library, or
2.2. Import Package from User Model to load the available Papyrus project

3. In the ModelExplorer select a system component where the component instances playing the
pattern roles will be identified/created; right click and select “CHESS - DesignPatterns - Select
and Apply a Design Pattern”. A dedicated wizard is shown (see Figure 1 and Figure 2).

4. Select the pattern to instantiate from the Available Patterns lists (this list is initialized with the
patterns library/projects that have been imported in step 2) and click “Apply”.

5. Bind the information available in the pattern into the current system model.

Figure 1 shows the role binding dialog available for the Triple Modular Redundancy pattern. The
upper part shows the roles defined by the pattern, while the lower part shows the available
candidates for binding in the system under design. Candidate matching simply relies on the meta-
model kind, i.e. components match components, components parts to components parts, ports to
ports, connections to connections; dedicated binding dialogs are available for each kind of meta-
model entity by using the "Next" button of the main dialog window. In order to declare a binding,
select a pair in the upper and the lower part of the dialog, respectively and then click on the
"Create mapping" button.

CHESS Architectural Patterns Guide

Note: A design pattern describes a set of roles that elements play in a pattern. In many cases,
elements that play a certain role do already exist in the application model. Therefore, it is
important to identify these and declare a binding to a role in the pattern (i.e. a role binding). This
information is used to determine which elements of a pattern need to be copied/created into the
application and which don't.

Click “Finish”; patterns entities (types, ports, instances, connectors) which have not been manually
mapped to system entities are automatically created in the model, and dependencies between
system model entities and pattern ones are created and stored in the CHESS system model under a
dedicated PatternApplication entity (see Figure 3). Component instances playing a part in the
pattern are tagged as <<PatternRole>> which stores the information of the applied pattern.

=

Select a Design Pattern
Select a design pattern from the list and click "apply” to apply it to the model

Available Patterns

Triple Modular Redundancy Pattern (TMR) (2-0o0-3 Redundancy Pattern, Homogeneous Triplex Pattern)
Monitor-Actuator Pattern

Intent/Context

Developing an embedded system with no fail-safe-state in a situation &
that includes high random failure rate and ne limitation on
redundancy, with the purpese of improving safety and reliability of the ¥

Problem

How to deal with randem faults and single-point of failure in order to
increase the safety and reliability of the systerm without losing the
input data in the

Solution/Pattern Structure

This pattern contains three identical modules or channels

operate in parallel. This structure is used to prevent the failure of a single component, which may lead to a complete systemn failure. If a single fault
occurs in ene channel then the other two channels will continue to work correctly and produce the correct actuation control signals.

Consequences

The main drawback for this pattern is that it is not appropriate for A
systemnatic faults handling. In this case the three channels are identical
and have the same possible fault, and the system will continue to work ¥

Implementation

To implement this pattern, the designer should replicate the channel
which includes the replication of the hardware as well as software,
With respect to the sensor, there are two options either to use a

Pattern Assumptions

The voter is a simple component that is carefull designed with
reliability ~ 1

Pattern Guarantees
R = 3Rchannel"2 - 2Rchannel ™3

Pattern Preview

«Collaboration
“Patterm
<= THMRFPattern

=i _+ channell: channel | |

Connector

“FlowPort:
+ channel out [

il -+ channelZ: Channel | |_

"F"ﬁwp‘:'#_l + voter inl [1

[=0 + wéret: voter 12

«FlowPort:
+ channeal out |

=l 4+ channel3: Channel | |

Connector wFl Ports
-+ wvoter inZ [1
I 1

wFlowPort: + woter in3 [1
Connector

“FlowP arts
+ channel out [

Cancel

Apply

Figure 1.

Design Pattern selection

=

Apply Design Pattern
Map Types

CHESS Architectural Patterns Guide

binding of pattern types
Element

Channel

Yoter

Bound to

not mapped (to be created)

Create mapping

Available candidates for mapping from the model
modelimaodelSystemView:ModuleX

ModuleX (from model:modelSysternView)

Delete mapping

model:modelSystemView: System

model:modelSystemView:Sensor

Clear all mappings

Pattern Preview
«=Collaboration
«Patterm

I THMRPattern

i+ channell: Channel | |
«FlowParts Connector
+ channeal out |

il -+ channel2: Channal | I

«“FlowP orts
+ channel out [

«FlchoQ_l + voter inl [1

=+ channel3: Channel

«FlowPorts
+ channel out [

i+ worer: voter [1

Connector :

«FlowPorts
+ woter in2 [1
1

wFlowPorts + woter in3 [1
Connector

| < Back

Mext

Figure 2.

Design Pattern instantiation wizard

Cancel |

CHESS Architectural Patterns Guide

v #¥ demo =

e i
B Model Explorer 5% | §= Outline EE@EREE Y= O
w = «CHESS» model Ll

?;:, <Package Import> CHESSPatterns
F «RequirementViews modelRequirementView
~ 7 «SystemViews modelSystemView
«Block, PatternReole= ModuleX
w =Block, System= System
= «PatternApplications tMRPattern_Application
" «Dependency> rolebinding_Voter_Voter
" «Dependency> rolebinding_Channel_ModuleX
-~ <Dependency> rolebinding_voter_in2_voter_ind
<" <Dependency> rolebinding_channel_out_act
-~ <Dependency> rolebinding_voter_in3_voter_in3
-~ <Dependency> rolebinding_voter_in1_voter_inl
<" <Dependency> rolebinding_channel3_channel3
" <Dependency> rolebinding_voter_voter
" <Dependency> rolebinding_channell_modulel
" <Dependency> rolebinding_channel2_channel2

v

-~ <Dependency> rolebinding_Connector2_c_channel2_channel_out_voter_ve
-~ <Dependency> rolebinding_Connector]_c_channell_channel_out_voter_ve
-~ <Dependency> rolebinding_Connector3_c_channel3_channel_out_voter_vo
= modulel: MoeduleX
= block1_1: Sensor
= channel3 : ModuleX
= voter: Voter
= channel : ModuleX
& Connectorl
. >

«PatternRole=
= modulel: ModuleX

—E) & in sens El out actE)

«PattemnRaoles
&l voter: Vioter

«PatternRole=
=] channel3: ModuleX

= invoter_in3

El out actE)

E) & in sens

= invoter_in2

«PatternRole=
= channel2: ModuleX

El out act

?‘I B in sens

€
(&%) Welcome | B BOD System|BD System_BD 32

[Properties &2

E «Block, System» System

Figure 3.

4.2 Define a new architectural pattern

Pattern Application

Patterns are stored in Papyrus projects; it is recommended to use dedicated Papyrus projects for patterns
definition, so to keep system components and patterns models separated and be able to share the latters

without the need to share the formers. It is possible
different patterns or split the patterns in different Pap

to use the same Papyrus project to define and store
yrus projects.

To create a new pattern, create or open a Papyrus model; in case of a new model, apply the registered
profile “CHESS Design Pattern” to the model itself (select the CHESS model in the Model Explorer Papyrus
view, open the “Profile” tab in the Properties view and select the “Apply Registered Profile” command).

The structure of a pattern is shown in the Figure 4 taken from the Papyrus Model Explorer View; the Triple

Modular Redundancy pattern coming with the CHESS |

ibrary is taken as example (see Figure 5).

~ [CHESSPatterns
» E2 Monitor_Actuator
*ITMR
=l channel1 : Channel
il channel2 : Channel
& channel3 : Channel
» 5 Connector1
» 57 Connector2
» 5 Connector3

(=] voter : Voter
~E3TMRTypes
» £ «Block» Channel
» 2] «Block» Voter

[B3 Diagram TMR Roles

Figure 4. Pa

ttern structure

CHESS Architectural Patterns Guide

«Collaboration»
«Pattern»
2 TMRPattern
o
w4 + channell: Channel [1]
«FlowPorts Connectorl
- channcl_out(l]l _l'
‘F‘°“P°"‘i‘ + voter_in1 [1]
| + channei2: Channel [1] =2 + vdrer: Voter (1]
nn r
- «FlowPorts Connector2 L «FlowPorts
+ channel_out [1] + voter_in2 [1]
| =
«FlowPort» + voter_in3 [1]
3] + channei3: Channel [1) Connector3
«FlowPort»
+ channel_out [1]

Figure 5. Pattern Structure, Composite Structure Diagram

The pattern itself is UML Collaboration stereotyped as Pattern (from the PatternsProfile profile coming with
CHESS). A role is a UML Property defined as CollaborationRole.

To create a new pattern:

1.

(optional but recommended) Create a new UML Package (from the ModelExplorer) to contain all
the elements of the new profile.

(optional) Create a Class Diagram (from the ModelExplorer).

Create (from the ModelExplorer or from the Class Diagram Palette) UML Class elements to be used
as type for the roles of the pattern (see Channel and Voter Blocks for the TMR example)

Create a UML Collaboration (from the ModelExplorer) and stereotype it as <<Pattern>>.

Set the values of the stereotype properties (from the “Profile” tab of the Eclipse Properties View).
Indeed, Pattern stereotype comes with a list of attributes through which it is possible to declare the
functional and extra functional (safety, security, performance) properties that can defined for the
current pattern and reused across pattern instantiation; for instance, when the pattern is
instantiated in a given system architecture, it is possible to reuse the aforementioned properties to
support specific claim about system properties.

Create (from the ModelExplorer) a Composite Structure Diagram (CSD) for the UML Collaboration.

Create Property elements inside the CSD (from the CSD Palette/Model Explorer) and set their type
to the appropriate UML Class created at 2.

Set each Property element as CollaborationRole (from the CSD Palette).
Add Ports and Connectors to the CSD elements (from the CSD Palette/Model Explorer).

