
CHESS: a Tool to Support
the Design of Safety-

Critical Systems using
Formal Methods

1

Outline

• Technological context of CHESS

• Functionalities currently implemented in CHESS

• Details: CHESS Profile & Formal Specification Languages

2

Technological Context

• Papyrus (https://eclipse.org/papyrus/) is an open-source project to provide
an integrated environment for editing UML and SysML models.

• CHESS (www.chess-project.org) is an open-source project to provide
component-based engineering methodology and tool support for the
development of high-integrity embedded systems.

3

https://eclipse.org/papyrus/
http://www.chess-project.org/

Functionalities currently implemented
• System Design

• Requirements Specification

• System definition

• Requirement Formalization

• Functional Refinement

• Architectural Refinement

• Contract Refinement

• Parametrized Architecture

• Nominal and Faulty Behavior Definition

• Functional Early V&V

• Validation of contracts

• Check the contract refinement

• Contract-Based V&V of State Machines

• V&V of state machines

• Safety Analysis

• Contract-Based Safety Analysis

• Model-based Safety Analysis

• Trade-off Analysis

• Document generation

4

System Design: Requirements Specification

• Informal requirements can be:

• represented using SysML Requirements Diagram.

• imported from excel files, csv files, or by using the ReqIF (Requirement
Interchange format)

5

System Design: Architecture definition

• Define components and their interface using the SysML Block
Definition Diagrams

6

System Design: Requirement Formalization

• Translate the informal requirements into formal properties using the textual
editor with content assistant for LTL (linear temporal logic)

7

System Design: Requirement Formalization

• Link the informal requirements to the formal properties

8

System Design: Contract Definition

• Formal Properties can be further structured into contracts.

• Contract describes the expected behavior of the component

9

System Design: Contract Definition

• The contract is a pair of properties representing an assumption and a
guarantee

10

Assumption: Property to be
satisfied by the component

environment

Guarantee: Property expected
to be satisfied by the component

provided that the assumption
holds

System Design: Architectural Refinement

• Decompose a component via SysML Block Definition Diagrams

11

System Design: Architectural Refinement

• Decompose a component via SysML Block Definition Diagrams

• Connect input/output ports of the components using SysML Internal Block
Diagrams

12

System Design: Contract Refinement

• Refine contracts of composite components linking them to the
contracts of subcomponents

13

System Design: Contract Refinement

• Refine contracts

• Inspect through overview over:

• System decomposition

• Contract refinements

14

Bilbao Plenary Meeting, October 16-18, 2018

System Design: Parametrized Architecture

Bilbao Plenary Meeting, October 16-18, 2018

System Design: Parameters instantiation

n = 4

instantiation

System Design: Nominal Behavior Definition

• SysML State Machine Diagrams are used to model the nominal behavior
definition of the component.

• A transition comes with a guard and an effect. The guard is a boolean
condition upon the values of components properties.

17

System Design: Faulty Behavior Definition

• Faults are introduced into the system (Fault injection)

• SysML State Machine Diagrams are used to model the faulty behavior
definition of the component.

18

Functionalities currently implemented

• System Design

• Requirements Specification

• System definition

• Requirement Formalization

• Functional Refinement

• Architectural Refinement

• Contract Refinement

• Parametrized Architecture

• Nominal and Faulty Definition

• Functional Early V&V

• Validation of contracts

• Check the contract refinement

• Contract-Based V&V of State Machines

• V&V of state machines

• Safety Analysis

• Contract-Based Safety Analysis

• Model-based Safety Analysis

• Trade-off Analysis

• Document generation

19

Functional V&V: Validation of contracts
• Check if a specific guarantee of the contract satisfies the

assumption of another contract

20

Component 1

A G

Component 2

A G

Functional V&V: Check the contract refinement
• Check the contract refinement

• Guarantees of composite component ensured by contracts of
subcomponents

21

G

<A,G> <A,G>

<A,G>

Functional V&V: Check the contract refinement
• Check the contract refinement

• Guarantees of composite component ensured by contracts of
subcomponents

• Assumptions of subcomponents ensured by contracts of other
components

22

A<A,G>

<A,G>

Functional Early Verification & Validation
• Contract-Based Verification of State Machines

• Verify if every state machine locally satisfies the contracts of the
associated component

23

Component 1

<A,G>

Functional V&V: V&V of State Machines
• Perform the verification of properties on state machines

(model checking, independently on contracts).

• Model Validation (e.g. reachability of all states)

24

Temporal Formula

Model Checker

Yes

No,

counter example …

Functionalities currently implemented
• System Design

• Architecture definition

• Requirement Formalization

• Functional Refinement

• Architectural Refinement

• Contract Refinement

• Functional Early V&V

• Validation of contracts

• Check the contract refinement

• Contract-Based V&V of State Machines

• V&V of state machines

• Safety Analysis

• Contract-Based Safety Analysis

• Model-based Safety Analysis

• Trade-off Analysis

• Document generation

25

Contract-based Safety Analysis (CBSA)
• Generate a hierarchical fault tree, given a contract refinement

• The top-level event is the failure of the system component

• The basic events are the failures of the leaf components and the failure of the
system environment

26

Failure of the system
environment in satisfying the
assumption of:
System_Brake_Time

Failure of the system implementation in
satisfying the contract:
System_Brake_Time

Failure of Hydraulic implementation
in satisfying the contract:
Hydraulic_Brake_Time

Failure of bscu implementation in
satisfying the contracts:
BSCU_Cmd and BSCU_Valid

Model-based Safety Analysis (MBSA)

• MBSA analyses the model extended with faulty behavior and searches
for the possible combinations that may lead to a system failure.

• Generate fault tree from the extended state machine

27

Functionalities currently implemented
• Nominal System Definition

• Architecture definition

• Requirement Formalization

• Functional Refinement

• Architectural Refinement

• Contract Refinement

• Parametrized Architecture

• Functional Early V&V

• Contract-Based V&V of Refinement

• Contract-Based V&V of State Machines

• V&V of state machines

• Safety Analysis

• Contract-Based Safety Analysis

• Fault Injection and model-based safety analysis

• Trade-off Analysis

• Document generation

28

Bilbao Plenary Meeting, October 16-18, 2018

Trade-off analysis

Conf1
•Prop1

•Prop2

Conf2
•Prop1

•Prop2

Conf3
•Prop1

•Prop2

Functionalities currently implemented
• Nominal System Definition

• Architecture definition

• Requirement Formalization

• Functional Refinement

• Architectural Refinement

• Contract Refinement

• Parametrized Architecture

• Functional Early V&V

• Contract-Based V&V of Refinement

• Contract-Based V&V of State Machines

• V&V of state machines

• Safety Analysis

• Contract-Based Safety Analysis

• Fault Injection and model-based safety analysis

• Trade-off Analysis

• Document generation

30

Document Generation

• Generate a document in html format, including:

• Textual information about:

• Components

• Ports

• Attributes

• Formal Properties

• Contracts

• Diagrams exported from CHESS as vector images format.

• Results of the verification, validation, and safety analysis (work in progress)

31

Document Generation

32

Details: CHESS Project structure
• CHESS Project is structured in 5 main views (packages):

• Requirement View: informal requirements definition

• System View: logical components and contracts definition

• Component View: software components definition

• Deployment View: hardware components definition

• Analysis View: analysis configurations definition

33

Details: CHESS Profile
• A profile in the UML provides a generic extension mechanism for customizing

UML models for particular domains and platforms.

• The Systems Modeling Language (SysML) is a general-purpose modeling
language for systems engineering applications.

• SysML allows the user to model:

• Informal Requirements

• System Architecture

• System behavior

34

Details: CHESS Profile
• SysML model extended with Formal Methods concepts

35

Details: CHESS Profile
• SysML model extended with faulty behavior/fault injection

36

Details: Formal Specification Languages
• OSS (OCRA System Specification): it is used to specify the components,

their ports and contracts, and their decomposition.

• For the contract definition, it involves a Linear-time Temporal Logic
Language (LTL with future and past operators)

37

COMPONENT example1 system
INTERFACE

INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;
CONTRACT reaction

assume: in the future in_data;
guarantee: always (in_data implies in the future out_data);

REFINEMENT
SUB a: A;
SUB b: B;
CONNECTION a.in_data := in_data;
CONNECTION b.in_data := a.out_data;
CONNECTION out_data:= b.out_data;
CONTRACT reaction REFINEDBY a.reaction, b.pass;

COMPONENT A
INTERFACE

INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;
CONTRACT reaction

assume: in the future in_data;
guarantee: always (in_data implies in the future out_data);

COMPONENT B
INTERFACE

INPUT PORT in_data: boolean;
OUTPUT PORT out_data: boolean;
CONTRACT pass

assume: true;
guarantee: always (in_data implies out_data);

Details: Formal Specification Languages

• NUSMV (a new Symbolic Model Verifier) language: it is designed to
describe the system behavior.

• It allows description of completely synchronous to asynchronous systems,
detailed to abstract systems.

38

MODULE main
VAR

request: boolean;
state: {ready,busy};

ASSIGN
init(state) := ready;
next(state) :=

case
state=ready & request: busy;
TRUE: {ready,busy};

esac;
SPEC AG(request -‐> AF (state = busy))

