CHESS Toolset User Guide

>

(¥

> CHESS

CHESS Toolset User Guide

Toolset Release 1.0.0

06 May 2020



CHESS Toolset User Guide

4

6

~N

1 Table of Contents

TaDIE OF CONTENTS ittt st e sab e st e s bt e e s bt e e s ab e e st e e s bt e e sabeesbeeesnbeesaneeesareesanes 2
1.1 [y o) B = U PSPPSR 3
[ Lo TolU g V=Y oLl a1y o T Y2 UPR 5
[a1dgoTe [¥To1dTo] o DU TSP PP PRI PORRTOPRTOPIO 5
TheE rOlE Of IMIDT PAPYIUS ...vviiiiiiiiieieiiiee e ettee sttt ee e sttt e e e st e e s s sate e e e sabaeeesnbaeeesaasaeeesssaeaesansaeeesansseeesnnssenenn 5
Creating @ NEW CHESS PrOjJECT ..cooii ittt e ettt e e e e e e s br et e e e e e e e s asrneeees 6
Creating @ NEW CHESS MOTEI ...ttt e e e te e e et e e e e e e e e sabeee s s sabeeeeenares 6
6.1 Defining the domain of the CHESS MOEl .......cocuuiiiiiiiiieee et 6
6.2 Naming CHESS MOdel BlEMENTS .....ciiieiiiieciiie e e e s bee e e s abee e e s nree e e e nanes 6
O CF AT gY <o LT =T P PPPR 7
7.1 The CHESS diagram Palettes.......uuii ittt e e st e e s satae e e sabaeeesntaeeeesnnaeees 7
WOrKing With the CHESS VIEWS ..cc.eeiiieiciiiee ettt ettt e st e e st e e s sbae e e s svaee e e sabtaeessastaeeessseeaesnns 7
8.1 REGQUITEMENT VIBW ittt ettt e e sttt et e e e s s s s bbb ae e e e e s ssssabtaeeeeesssssssnraneaeeesssnnsnnns 8
8.2 SYSTEM VIBW ittt ettt et e e e ettt e e e e e e s e sttt e e e e e e e s e s sababaeeeesesassssrebaaaeesssnnsnnsrsnaes 9
8.3 COMPONENT VIBW ..utitiiiiiiiiiiiiiiteee e eseiitt et e e e s s sttt e e e s s s ssaab et e e eeeseasasbbeaaeeeesssnssssbeaaaeeesssnsssssrneeeessnas 9
8.3.1 FUNCEIONAI VIBW ..ttt et s st sttt sme e er e re e 10
e T S R O - T DI F- V= =Y PSP 10
8.3.1.2  Composite STrUCLUIE DIiagram ... . ecieeeieiceci e e se s s aen 11
8.3.1.3  State Maching DIagram .......coccuiiii i ceiiee ettt et e e e tee e e e ebee e e e be e e e e ntae e e e nbaeeeennens 13

L 20 T 0 S 1 Vo 6 V7 Y20 1 =Y = - | o o 13
T T R T To (U [T ool I DI - =4 -] o T PP PP UPPTUPPPO 13
8.3.2 EXTra FUNCEIONAT VIBW ...ttt s s 13
e I R O - T o 1 -V = =Y 0 (PRSP 14
8.3.2.2  ComPpPOSIte STrUCLUIE DIiagram . ... e e s e aan 14
8.3.2.3  State Maching DIagram c.cc.cc.eeiiiiiiie ettt e e e e e et e e e e e e e e anb e e e e e e e e esnsareeeeeeaeean 15

T T Vot AV VAo [ =Y = = o SRS 15

8.4 DEPIOYMENT VIBW ettt ettt ettt e e et e e e et e e e s eabee e e eabaeeeenasteeeesaseeeeennseeesennrens 15



CHESS Toolset User Guide

8.4.1 Class and Composite Structure diagram .........eeeeieeciiiiiiiii e e e e e 15
8.4.2 Modeling MemOry Partitions ........oiiieiieriieiiie sttt e e s e s sbee e s s sbee e e s e 15

8.5 AANQIYSIS VIBW . etteee ettt e e e e et e e st e e e s abbe e e s sabaeeeeansbeeeeansbeeesssbaeeeenbeaeeenrees 17
8.5.1 D L=T o=t Te 1 o1 LYY= Y PP 17
LT S R O - T o 1= Y= =Y 1 (PR 17

8.5.2 RT ANGIYSIS VIBW ..veiieiieee ettt ettt e e ettt e e et e e e e et e e e e eeabae e e esabaeeeeenbaeeeesasaeeseenseeeeansens 18

8.6 INSTANCE VIBW iiiiiiiiiiii ittt e a e s s be e s be e s s abe e e s snra s 18

I |V ToTe (=Y RV [T Y o o HO O PP P PP PP USRI 21
9.1  Validate Core CONSTIAINTS ..cc.uiitiiiieiieieeitee sttt ettt sttt e e s b e saee st e sateeabe e beenbeesneas 21
9.2 Configuring the CHESS model validation fEatUres .......cceeeieciieiieciiee et 21
10 Y T Yo =] B o = Te IV o =Y V2] R 22
10.1  THE ANAIYSIS CONTEXL c...uviiii ittt e e et e e e et e e e e e bt e e e eebteeeesbaeeeseastasesenseseaeestasassassenaeanns 22
10.2  TimMING ANGIYSIS coiutiiee ittt ettt e et e e e et e e e e bte e e eebeeeeeebtaeesebtaeeesstaeesanssasasanseseesastesasanseneananns 22
10.3  Dependability ANAIYSIS .....ccoc i e e et e e e et e e e s e ata e e e earaaaeeans 22
10.4  Contract-based @NalySiS......cccuiiiieiiiiii ettt e e et e e e et e e e e ebae e e e e ataeaeenraaaeaans 23
10.5 Analysis of Reliability USINg SAN MOUAEIS ........ooiiieiiiie ittt e e e ate e e e eareeeeeans 23
11 ArChit@CtUIal PAtTEINS ...ttt et b e bt s he e st e et e bt e sbeesaeesane e 23
12 Ada infrastructural cOde ENEIAtION ........eeii it tee e e e be e e e e be e e e e abae e e enrees 23
13 LU Lo Lo =1/ oY a1 o [ oY PPt 23
14 REFEIENCES ..ttt b e h ettt e b e e bt e bt e s bt e sae e satesabe e bt e beenbeesbeesbeesateenteebeens 23

1.1 List of Figures

= U T Rl D T=TY =4 T ol o 1Y SR 8
Figure 2 Requirement View - Requirement Diagram palette......ccccucuiiiiiiiieiiiiiiiec et 9
Figure 3 Switching between Functional and Extra-functional VieW........ccccccevveiiieiiiiiii s 10
Figure 4 CHESS Funct View - Class Diagram Palette ........cccueeiiiiiiieeciieee ettt et 10
Figure 5: CHESS Funct View - Modeling INterfaces ........cocueieiiiiiicciee ettt 11
Figure 6: CHESS Funct View - Modeling Component TYPES ...cccuviieiiiiieeeiieeeecieeeesivee e esvee e e sivee e e seveee s e v 11
Figure 7: CHESS Funct View - Modeling Component Implementations.........ccccceeieecciiiiieee e 11
Figure 8 The Build INStanCes COMMANG.........ccoiiiiiiiiiiiie e e e e e s e e s s are e e e sabee e e ssbeeeeennsees 12
Figure 9: CHESS Funct View: Modeling provided and required Ports in Composite Structure Diagram ........ 12
Figure 10: Modeling Instances in a Composite Structure Diagram .........cccccvieieieeeieccciiiieeee e eeecrrree e e e e 13



CHESS Toolset User Guide

Figure 11 EXtra-fuNCtioNal VIBW ......eeiii ittt re e e e e e e e st ae e e e e s e e e s nnbtaaeeaeaeesnannns 13
Figure 12 Extra-functional View Composite Structure Diagram Palette........ccccooeeiiiiiieicciiee e 14
Figure 13 Composite Structure Diagram in Extra-functional View modelling Real Time information............ 15
Figure 14: modelliNg HW TYPES ..oeiiiiiiiiicciiie ettt et e st e e et e e st e e s s be e e e sssbeeeesabeeeeenbeeesennsens 16
Figure 15: HW instances, MemoryPartition instances and allocations..........ccccveeeiiiiieieciiee e 17
Figure 16 Class Diagram to model dependability concerns in the Analysis VIeW ......c.ccvvcvieeiviieeniniiien e, 18
Figure 17 CHESS Build Instances command for SW SYStem..........eiiiiiiiiiiiiiieeceee st 19
Figure 18 CHESS Build Instances command for HW SYStem ........cooicuiiiiiiiiiii et 20
Figure 19: InStances SPECITICAtIONS ... .uviiiiiiiiieciie e e e e e s s e e s s abe e e e sabe e e e snreeesennrees 21



CHESS Toolset User Guide

2 Document history

Date Changes

Current version Update with respect to the delivery of tool version 1.0.0.

Restructuring and reduction of scope as introduction guide, links are provided to
separate guides for details on specific modelling and analysis methods.

3 Introduction
This guide introduces to the CHESS Toolset features and their status, as well as basic hints for the usage of
the toolset for modelling system and software models and performing analysis.

The CHESS toolset is an Eclipse based open source methodology and toolset, aiming to improve MDE
practices and technologies to better address safety, security, reliability, performance, robustness and other
non-functional concerns, while guaranteeing correctness of component development and composition for
critical embedded systems.

CHESS provides editing capabilities to model all phases of development, from the definition of
requirements, to the modelling of the system functional, logical and physical architecture, down to the
software design and its deployment to hardware components. The CHESS toolset offers schedulability and
dependability analysis functionalities across the life cycle. According to the results of the analysis, that are
back-propagated to the model itself, the engineer can perform some tuning on the model in order to satisfy
real time and dependability requirements.

To find out more about the CHESS project (e.g. the methodology and language) see http://chess-
project.org.

4 The role of MDT Papyrus
CHESS is built as set of extensions of the MDT Papyrus Eclipse UML editor.

So a basic knowledge of MDT Papyrus (not covered by this user manual) is required to be able to work with
a CHESS model. General documentation about MDT Papyrus is available at:

http://wiki.eclipse.org/Papyrus User Guide

Also the PAPYRUS USER GUIDE SERIES About UML profiling” provides useful information about working with
stereotypes and stereotypes values.

1

http://www.eclipse.org/modeling/mdt/papyrus/usersTutorials/resources/PapyrusUserGuideSeries_ AboutUMLProfile
v1.0.0_d20120606.pdf


http://chess-project.org./
http://chess-project.org./
http://wiki.eclipse.org/Papyrus_User_Guide

CHESS Toolset User Guide

5 Creating a new CHESS project

To create a CHESS project in the local Eclipse workspace:

>

>

Tps

Open the Project Explorer view (if not already visible on the left side of the Eclipse area) by using
the menu Window->Show View->Other...->General->Project Explorer

Right click on the Project Explorer and select New->Other...->CHESS->CHESS Project, provide a
name for the current project and click Finish.

The tool will ask to switch to the Papyrus perspective; this is the right perspective to be used while

working with a CHESS project.

6 Creating a new CHESS model
To create a CHESS model:

>

>
>
>

right click on a CHESS project in Project Explorer view

select New->Other...->CHESS->CHESS Model, then provide a name for the current project.

Right click on the Project Explorer

select New->Other...->CHESS->CHESS Project, then provide a name for the current model and click
Finish.

A CHESS model is created with the CHESS profile automatically applied on it; moreover the default

packages structure supporting the CHESS views is created in the model.

The detailed CHESS profile is available at < link profile >

6.1 Defining the domain of the CHESS model
In order to define the Domain of the CHESS model:

>

YV V VYV VY

Click on the CHESS model in the Model Explorer
Select the Properties View

Go to the Applied Stereotypes field

Select the CHESS (from CHESS::Core) Stereotype
Select the “domain” field

Assign the appropriate domain of your model from the scroll list:
Cross_domain

Avionics

Automotive

Telecom

Space

Medical

Petroleum

O O O O O O

6.2 Naming CHESS model elements

*.\ Please notice that CHESS model elements should NOT contain spaces in their names.



CHESS Toolset User Guide

7 Creating diagrams
Model diagrams can be easily created:

e From the Model Explorer view, by right clicking on the model element which has to own the new
diagram

e From the main Papyrus->Diagrams menu

e From the main toolbar by clicking on the desired diagram icon.

Note that in the last two cases the new diagram is owned by the currently selected model entity.

7.1 The CHESS diagram palettes
The CHESS toolset implements dedicated palettes to work with the current view and diagram.

At any time the tool shows the proper palette by considering the current view and selected diagram.

8 Working with the CHESS Views

The CHESS toolset support several design views, which are the means to enforce separation of concerns, as
defined by the CHESS methodology.

Figure 1 summarizes the CHESS views. In the same figure we also depict the main design activities allocated
to the different views, their related concerns, and some precedence constraints, depicted as arrows.



CHESS Toolset User Guide

Requirements
View

Requirements
definition

Requirements-
design entities
traceability

[blocks, blocks decomposition-
bindings, data flows, behaviour
definition]

Data type
definition

Components definition

Data type [Interfaces, ComponentTypes,
definition Componentimplementations]

Behaviour Definition

Components interaction
scenario definition

[components instances
bindings]

Component Extra Functional View

System definition Contract-based design
Dependability concerns.

SW System definition

Functional,
dependability
analysis

SYSTEM

Hardware definition

Components
instances to cores
allocation

Dependability/

[extra-functional concerns]

Dependability/timing concerns

schedulability

analysis

Generation of Generation of containers /
connectors instance to container allocation/ Code
(communication task to core allocation generation

code)

Figure 1: Design Flow

SW & HW

In the following sections we summarize the kind of diagrams and entities that are created in each view.

8.1 Requirement View
Requirements are modeled in the Requirement View package through the SysML Requirement Diagram.



CHESS Toolset User Guide

The Requirement View palette allows to create the model entities, as depicted in Figure 2

. Palette %
K@ail-B-
J Nodes
53 Package
=] Requirement
= Problem
[® Rationale
= Comment
{7} Constraint
%) Edges
A& Copy
~" Dependency
A Derive
&- Decompose
%% Packagelmport
+ Realization
A Satisfy
A Verify
7 Link

Figure 2 Requirement View - Requirement Diagram palette

8.2 System View
The System View provide a suitable frame for the system level design activities. In the System view system
entities are initially designed at a high level of abstraction and then hierarchically decomposed.

The System View is used to work with contract-based design, dependability; several functional and
dependability analysis are supported at this level (see the “CHESS guide for contract-based analysis, model
checking, and safety analysis”).

The diagrams allowed in the System View to model the System Architecture are:

e Block Definition Diagram (BDD)

e Internal Block Diagram (IBD)

e State Machines (SM): e.g. used to model dependability ErrorModel

e Sequence Diagrams: e.g. used to model dependability information (e.g. attack scenarios)

8.3 Component View
This view is conceived to support the design of software components. For full details related to the
software development and schedulbility analysis see the “CHESS Software Development Guide”.

The Component View is actually composed by two sub-views, the Functional View (enabled by default) and
the Extra-Functional View.



CHESS Toolset User Guide

=

Ts
It is possible to switch between Functional and Extra-functional views using the button with the

Blue/Yellow squares, as illustrated in Figure 3. The blue square indicates that the current view is the
Functional view, while the yellow square indicates the Extra-functional view.

E RS LR |
%

[Activate Extra-Functional View
Java [= SVN Repository Exploring |72 Papyrus

Figure 3 Switching between Functional and Extra-functional View

8.3.1 Functional View
Through this view the functional specification of the software can be provided. The next paragraphs
illustrate the diagrams that can be modeled in the Functional View.

8.3.1.1 Class Diagram
Class diagrams are used to model Packages, Data Types, Interfaces, Component Types, Component
Implementations, Operations and Properties.

UML entities allowed in Class Diagrams are enforced by the customized palette, as illustrated in Figure 4.

. Palette P
(h&il-8-
Z= CHESS FunctView

B3 package

%] ComponentType (Component)

“]Componentimplementation
(Component)

& Interface

& Operation

B Property

Z]Component

E Class

DataType

& primitiveType

=] BoundedSubtype (DataType)
CollectionType (DataType)
TupleType (DataType)
Enumeration

= Enumeration literal

/ Generalization

- Realization

7 Association

" Dependency

Figure 4 CHESS Funct View - Class Diagram Palette

Figure 5 illustrates the modeling of Interfaces in a Class Diagram in the CHESS Functional View.

10



CHESS Toolset User Guide
«Interface» aInterface» «Interface»
Producer_IF Consumer_IF Store_IF
@ + Produce( + Consume( in f: Float @ + Flusho
. { : @ + Store( in i Integer)

Figure 5: CHESS Funct View - Modeling Interfaces

Figure 6 illustrates the modeling of Component Types in a Class Diagram in the CHESS Functional View.

Figure 6: CHESS Funct View - Modeling Component Types
View.

Figure 7 illustrates the modeling of Component Implementations in a Class Diagram in the CHESS Functional

A
'
L}
Al
'
\
L
1
1

1\
\
\ “
RealizationO Realization1 Realization2
3 “1 “
l=componentimplementation, statefulSoftwaresy  [<componentimplementation, statefulSoftware ncomponenumplem;ntation, statefulSoftwares
«Components «Components «Component»
Producer_impl Store_impl Consumer_impl

Figure 7: CHESS Funct View - Modeling Component Implementations
8.3.1.2 Composite Structure Diagram

A Composite Structure Diagram is created for a given component, to model:
[ ]

provided/required ClientServerPort

11



CHESS Toolset User Guide

e Componentimplementation instances and connectors;
<<ComponentType>> Components.

this

is not allowed for

the

The information provided through the Composite Structure diagrams in this view are also used by the
tool to automatically build the software Instance Model (using the Build Instances command available

through the Context Menu as depicted in Figure 8).

[ Project Explorer : Model Explorer &2 = ]
=EFRaE -
4 B «CHESS» protectedOperationModel
£3 «RequirementView» modelRequirementView
3 «SystemView» modelSystemView
4 B3 «ComponentView» modelComponentView
3 DataTypes

£3 Interface
B3 Types
£3 Implementation Code generatio}\
4 B3 SwSystem Create validation plugin for this DSML
%] «CHGaResourcePlatform» SwSystem 35 Tracing
%] Partitions Java
E3 SwSystem_instSpec_full Utils
B3 Diagram SwSystem % Moka
E3 FunctionalPartitions 2] Qompass Designer
Ba Diagram Package Diagram £ Open a CDT Editor
3 «DeploymentView» modelDeploymentVie g5 Export

3 «AnalysisView» modelAnalysisView New Child
B3 «PSMView» modelPSMView New Diagram
New Table

Convert Old Table to New Table
Convert All Old Tables to New Tables

*® Delete

e

Rename

) Undo
Redo

of Cut
B Copy
Paste
e Import
J Validation

& Create Submodel

Enable write

Compare Analysis Results
#*E CHESS

Delete

F2
Ctrl+Z
Ctri+Y

Ctrl+X
Ctrl+C
Ctri+V

’ Build Instances ,\__l

Figure 8 The Build Instances command

See 8.6 for more information about modeling instances.

«Components
«componentType»
Producer
internal structure
o | «ClientServerPorts «ClientServerPort»
5] '{Fe'qmtéﬁa_‘ e=[Store_IF]} + Store_IF_RI[1]
{provinterfaces[Producer IF]} + Producer_IF_PI '
. «ClientServerPort»
{reqlntetfm [Consumer_IF]} + Consumer_IF_RI [1]

Figure 9: CHESS Funct View: Modeling provided and required Ports in Composite Structure Diagram

12



CHESS Toolset User Guide

«Component»
SwSystem
internal structure
+ Producer_inst: Producer_impl + Consumer_inst: Consumer_impl
ntemalEaC e internal structure
+ Producer_IF_PI Propagation: + Consumer_IF_PI
A [O] + Consumer_IF RI [iql il i [o:l
«ClientServerPort» «ClientServerPorts| «ClientServerborts
+ Store_IF_RI
+ Store IF RI — =

. ClientServerPort:
«ClientServerPort= & 5

«Propagatiop

«Propagation»

«ClientServerPort»
Store_inst: Store_impl
internal structure

+ Store_IF_PI

Figure 10: Modeling Instances in a Composite Structure Diagram

8.3.1.3 State Machine Diagram
A State Machine Diagram is created for a given Componentimplementation, to model functional behavior
for Componentimplementation.

8.3.1.4 Activity Diagram

An Activity Diagram can be created for a given Operation of a Componentimplementation to model intra
Componentimplementation bindings, i.e. the called Operations (information used by Schedulability
Analysis).

\

N Currently Decision nodes are not supported by the Schedulability analysis.

8.3.1.5 Sequence Diagram
Sequence diagrams are used to model collaboration scenario. The scenario can be given in input to the
schedulability analysis.

8.3.2 Extra Functional View
Through this view the extra-functional specification of the software can be provided, such as the real time
and dependability attributes. The next paragraphs illustrate the diagrams that can be modeled in the Extra-
functional View.

=

s
The Extra-functional View is indicated in the editor with a yellow square.

=@ HvO-Q-

| Activate Extra-Functional View |

T -

Figure 11 Extra-functional View

13



CHESS Toolset User Guide

8.3.2.1 C(lass diagram
Class Diagrams are used in the Extra-functional View to work with dependability stereotypes (e.g. related to
StateBased and FailurePropagation, see the guide related to dependability support).

8.3.2.2 Composite Structure Diagram

Composite Structure Diagrams are used in the Extra-functional View to model real time, state based
analysis and failure propagation information for the available ports and parts/instances in the context of
the classifier subject of the composite diagram. For an alternative and more powerful way to model extra
functional properties at instance level the Instance View can be used in place of the composite diagram.

A subset of the modeling elements is available from the palette for Composite Structure Diagrams in the
Extra-Functional View, as illustrated in Figure 12, while other stereotypes concerning extra functional
properties for state based analysis are available in the Profile tab of the Papyrus Properties view.

.> Palette
N®eii-B-
FFPTC
= FPTCSpecification
(Comment)

= FI4FASpecification
(Comment)

# Link

Z Real Time
= CHRtSpecification
7 Link

Figure 12 Extra-functional View Composite Structure Diagram Palette
==

Tes

From the main CHESS menu in the toolbar: CHESS->Filters->CHRtSPecification->Show/Hide to manage
CHRtSpecification visibility for the current diagram.

Right click on a Componentimplementation instance, select Filters->CHRtSPecification->Show/Hide to
manage CHRtSpecification visibility for the current instance.

For info on modeling Real Time properties using the <<CHRtSpecification>> Stereotype see Section 10.2.

14



CHESS Toolset User Guide

«Component»
SwSystem
= internal structure
S «cHRtSpecification» «cHRtSpecification»
« tSpecification» s
o Diadice «CHRtspeclflcatlcq» } ) )
occKind=periodic(period=(value=125.0,unit=ms)) occKind=sporadic(mininterarrival=(value=125.0,unit=ms))
protection=sequential protection=guarded
rIDI=(value=125.0,unit=ms) riDI=(value=125.0,unit=ms)
context=Consume

4 Producer_inst: Producer_impl ST S e COnET R
internal structure st —Imp!

/"' 3 internal structure
+ Producer_IF_PI [Oj + Consumer IF_RI - «Propagations ‘;-} Consumer_IF_PI
1=

«ClientServerPort»| «ClientServerPort»)

«ClientSgrverPort=

a + Store_IF_RI
«ClientServerPort»

+ Store IFRI ]
«ClientServerPorts

«Propagatio
«Propagation»

«ClientServerPort»

+ Store_IF_P!

/ i «cHRtSpecification»
S «CHRtSpecification»

protection=guarded
context=Flush

«cHRtSpecification»
«CHRtSpecification»

protection=guarded
context=Store

Figure 13 Composite Structure Diagram in Extra-functional View modelling Real Time information

8.3.2.3 State Machine Diagram
State Machine Diagrams are used in the Extra-functional View to model dependability ErrorModel for a
given Componentimpl.

8.3.2.4 Activity diagram
Activity diagrams are not used in the Extra-functional View.

8.4 Deployment View

8.4.1 C(Class and Composite Structure diagram
Class diagrams are used to model the single or multicore CH_HWProcessors (see Figure 14).

Composite Structure diagrams are used to model the platform system model (see Figure 15), to then
enable the allocation of software components instances.

See guide about schedulability analysis for further details.

8.4.2 Modeling Memory Partitions
MemoryPartition (from MARTE) represents a virtual address space which insures that each concurrent
resource associated to a specific memory partition can only access and change its own memory space.

MemoryPartitions are created in the deployment view, first at type level in a class diagram, together with
the HW types, in particular processors and physical memories, and then at instance level using the
composite diagram; see Error! Reference source not found. and Error! Reference source not found. as
example.

15



CHESS Toolset User Guide

& Papyrus - zzz/ model.di - Eclipse Platform

Navigate Search Papyrus Project Run CHESS Window Help
RPN B R B S BB R BT B e -8 BB B sk ssoredemere: T T W EIS -0

[ 2 X 5 - |[100% =

‘ | [ | [ Resowce =) Papyrus iy SV Repository Exploring

File

A=

-

:'lzﬁ‘

Edit Diagram #JDiagram

=l &

a4 - - - - EISegoe uL

% Model Explorer 51

[-{?} «<«CriticalityLevel = > <Constraint> ASIL B

=-5] <<Componentimplementation > > <Component: C
| bem csClientServerPorts» <Port> ClientServerPo

%] <<Componentimplementation>> <Component:> C

[-{7} «<«Criticalitylevel = > <Constraint> ASIL A

F-{7} <<CriticalitySpecification>> <Constraint> Canstrz
= < <Companentimplementation > > <Component> C

|B§ Diagram CompositeDiagram

< <Companentimplementation > > <Component> 5

{7} <«CriticalityInterfaceSpedfication>> <Constr

= <Property> componentImpl1 : ComponentImpl

Diagram CompositeDiagram

Diagram SW_CSD

& <Interface> Interfacel

E-E0 «<CHGaResourcePlatform> > <Package = SwSyste

B-E

| B@

EE Diagram SW_CD

-1-E0 «<Deploymentview s> <Package> modelDeploymenty

5] <<CH_HwProcessor, GaExecHost>> <Componeni

=] < «MemoryPartition>> <Component> MemoryPari

5] <Component: System

{7} <«Criticalityspecification:> <Constraint> ASI

47 < «CriticalitySpecification>> <Constraint> ASL

& <Property> eCU : ECU

~[=] <Property> cH_HwProcessor 1 : CH_HwPrc

Bl <<HWRAM>> <Property > ram : HWRAM

~[=] < <MemoryPartition>> <Property> memor

«<Connector >

Diagram HW_CSD

&) <HWRAM>> «<Component> HWRAM
<<Allocate>> <Abstraction: ram

7 <<Allocate>> <Abstraction> ram

=] < <HwComputingResource > > <Component: ECU

4

0F Outline 53 o B

B v =g

= 0

=R E,g =

-F1 <<Componentview=> <Package > madelComponentvi = |

=l <<MemaryPartition > > <Property> memor

-3 <<CHGaREsﬂurcEP\atfan>> <Packane > Svstem T
3

Zls =B r[A-&-5-—-|

3 *model.di 2

il

«Components
=hwComputingResource:
£]ECU

Booof - % -
[ B~ o8 - & -

«=Components
7] System

=Component»
«cH_HwProcessor, gafxecHosts
=] CH_HwProcessorl

=Components
<hwRAM:
= 1HWRAM

«Components
«memoryPartitions
=] MemoryPartition

58 New Block Definition Di...

New Internal Block Dia...

[ Properties 52

[ JEcu

New Internal Block Dia... | BB depAnalysiscD ‘ &g sw_co

=12x

= 0
[

% PlatformSpedification <0
[ Package
= ] CH_HWPracessor (Component)
= ] CH_HwBus Componnet)
= |HWActuator (Component)
= ]HWSensor (Component)
=] HwCache (Component)
= ]HwASIC (Component)
= ] Partition (Component)
£ | Component
{2} Constraint
=) Comment
= Link -

#¥ Contracts @
] contract (Class)
=] ContractProperty (Property)
{2} FormalProperty (Constraint)

= ] System {ComponentImplementation)

_'l_I
[B3 sw_cso | BR Hw_co 52 | B3 Hw_csp | [BR proc_csp

® T=D

Figure 14: modelling HW types

-~ rResource -
uML
Res mult [1
Comments
Marte s protected Qe @ fase Is active O tue @ fake
Profile ProcessingResource
Style Speed factor 1o
Appearance
|| Resmult | 1
Rulers And Grid
Advanced Is protected Otue @ false Is active Otue @ false
[Contracts | | Main scheduier [<undefined> E| |:|
Ports
’—CompuﬁngResource
Sneed fartor I'in ‘ =l

As an example, in Error! Reference source not found. the MARTE HwComputingResource stereotype (as
extension of Component) is used to model a HW entity (ECU) composed by one CPU (CH_HWProcessor)

and

RAM (HWRAM.

The MemoryPartition is instantiated through the composite structure diagram (see Error! Reference source
not found.), together with the HW components.

Processor instance.

A Memory Partitions instances must be modeled inside a container which also contains the associated

To allow the specification of MemoryPartition properties at instance level, in the composite diagram the

MemoryPartition stereotype has to be manually applied to the properties

MemoryPartitions.

representing the

MemoryPartition instances are bound to the given HW memory through the Allocate MARTE relationships.

16



CHESS Toolset User Guide

The MemoryPartition stereotype comes with the MemorySizeFootprint property which can be used to set
the size of the partition, in particular the percentage of the HW memory which is reserved. The
MemorySizeFootprint property can be specified by creating an OpaqueExpression (e.g. named size) and
then using natural language to provide its value (see bottom part of Error! Reference source not found.).

{2} <<CriticalityInterfaceSpedfication’ > <Constr £ E WU rewrart rort
(=] <Property> componentImpl1 : ComponentImpl s ol +eCU:ECUQL] i {7} NfpConstraint
Diagram CompositeDiagram - ememonyPartitions { (Constraint)
By Diagram SW_CSD gemonforttion N (= + memoryPartition2: MemnoryPartition [1] 12} Constraint
.. @ <Interface> Interface 1 = + memaryPartitionl: MemoryPartition [1] 7 Connector
E-E3 <<CHGaResourcePlatform>> <Package: SwSyste B =MemoryPartition= )
o memorySizeFootprint=size T “/ Link
= = - | 2% Contract ol
B Diagram SW_CD Tr cAllocates 1 cAllocster ) DelegationConstraint
<<DeploymentView>> <Package> modelDeploymenty el N ‘x @ ((:Eo?ﬂgs?raci';lt)ms an
2 1 <<CH_HwProcessor, GaExecHost > <Componeni S + cH_HwProcessorl: CH_HwProcessorl [1 Ty \J
7] <<MemoryPartition>> <Component:> MemoryParl = = «hwRAM:»
E-%_] <Companent: System =] + ram: HWRAM [1] ||
= 1 1
7} < <CriticalitySpecification>> «<Constraint> ASI
17} <<CriticalitySpecification >> <Constraint> ASI ;I
EHEI <Property> eCU : ECU il | »
B <Property>cH_HwProcessorl: CH_HWFTCl | | B ey Block Definition Di... | B3 New Internal Block Dia... New Internal Block Dia... | B depAnalysisCD ‘ B sw_co | B3 sw_cso |Eg Hw_co | B rw_csp &3 | B Proc_csp
=] <<HwRAM:=>> <Property> ram : HWRAM
& <<MemoryPartiton>> <Property> memor E Properties £2 : v =8
&= <<MemoryPartiton>> <Property > memor

<Connector > o memoryPartition1

; Diagram HW_CSD
-] <<HWRAM>> <Component> HIWRAM = [Resource a
<<Allocate>> <Abstraction’ ram ——— || Resmult [1
. Comments
<<Allocate >> <Abstraction> ram “Marte | Isprotected Otue O false Is active Otue @ false
2] < <HwComputingResource > > <Component: ECU
-0 <<CHGaResourcePlatforT>> <Package Sustlj Profile [ SwResource
il } Style Res mult [1
0= outline 52 B ’_B| @ Y= 0O [feeexe protected Otrue @ fake Is active Otrue @ fake
Rulers And Grid
Advanced Memory size footprint |@ size=30%
r Contracts
I%@ EE Initialize services CEI B -4 4 Delete services | A | )|

[ [ [ |

Figure 15: HW instances, MemoryPartition instances and allocations

MemoryPartition component (not instances but classifier) can be decorated with criticality level (e.g. ASIL)
by using the CriticalitySpecification entity (see guide about support for modelling criticalities).

Regarding the SW to HW allocation: SW components are allocated to cores. In case of MemoryPartitions
associated to the processor the proper allocation of the SW component instances to the MemoryPartition
instances (of the same HW computing resource) is not explicitly modelled; it is automatically derived
according to the criticalities of the SW components (typing the instances) and the criticality of the
MemoryPartitions.

8.5 Analysis View

8.5.1 Dependability View

8.5.1.1 C(lass diagram
Class diagrams in the Dependability View are used to model dependability analysis contexts, as depicted in
Figure 16. See section 10.3 for details on the dependability analysis.

17



CHESS Toolset User Guide

«stateBasedAnalysis»
«Components»
StateBasedAnalysisl
«StateBasedAnalysis»

platform=[System_instSpec]
targetDepComponent=[]
measure=Reliability { instantOfTime = 10000 }
measureEvaluationResult=null

Figure 16 Class Diagram to model dependability concerns in the Analysis View

8.5.2 RT Analysis View
Class diagrams in the RTAnalysisView are used to model timing analysis contexts. See the “CHESS Software
Development Guide” for further details related to schedulability analysis.

8.6 Instance View

Hardware and Software Instances owned by a given component in CHESS can be modeled in the
Deployment and ComponentView respectively through the Composite Structure Diagram, i.e. through
Properties. Each Property comes with its ports, i.e. the ports defined for the Component which types the
Property itself. Properties can be connected together through the ports by using the Connector.

UML provides a dedicated set of constructs which can be used to model instances and their properties,
basically the InstanceSpecification and Slot; this support allows to overcome some limitation that can be
encountered while using Composite Structure Diagrams for the modeling of instances, in particular
hierarchical instances with extra functional annotation. However there is not a dedicated UML diagram that
can be used to properly work with them to easily model instances of components, ports and connections.

The CHESS toolset allows to automatically derive the InstanceSpecifications and Slot entities by starting
from a root component. In particular each Property and Connector is mapped onto a dedicated
InstanceSpecification, while Ports are mapped onto Slot. Extra functional information (if available, e.g.
modelled in the composite diagram) is attached to InstanceSpecifications and Slots.

To invoke the Build Instance command:

e from the Model Explorer, select the CHGaResourcePlatform that represents the SW System (in the
Component View), or the CHGaResourcePlatform that represents the HW configuration on which
the system is deployed (in the Deployment View) as the root entity for which the instance model
has to be created and right click on it,

o select the command CHESS-> Build Instances.

Notice that Build Instances must be invoked both for the SW system (Figure 17) and for the HW system
(Figure 18). Different HW systems can be defined (with their corresponding instances created by means of
the Build Instances command) in order to model different deployments of the system and perform
separate analysis on each of the different deployments, for comparing them and identifying the best
deployment configuration.

18



CHESS Toolset User Guide

[ Project Explorer %: Model Explorer &2

=

tEREe® -

4 B2 «CHESS» protectedOperationModel
B3 «RequirementView» modelRequirementView
B3 «SystemView» modelSystemView
4 B3 «ComponentView» modelComponentView
» B3 DataTypes
» B2 Interface
» B3 Types
» B3 Implementation
4 B2 SwSystem
» [£) «CHGaResourcePlatform» SwSystem 3
» 41 Partitions
» B2 SwSystem_instSpec_full
B3 Diagram SwSystem

| =

» B3 FunctionalPartitions G

B3 Diagram Package Diagram ‘ ©

» B3 «DeploymentView» modelDeploymentVie g4
» B3 «AnalysisView» modelAnalysisView |

v B3 «PSMViews» modelPSMView

a

o

1]

‘ A

v
|

|

B

| @

| e

Iy

‘ L]

5

Code generation
Create validation plugin for this DSML
Tracing

Java

Utils

Moka

Qompass Designer

Open a CDT Editor

Export

New Child

New Diagram

New Table

Convert Old Table to New Table
Convert All Old Tables to New Tables
Delete

Rename

Undo
Redo

Cut

Copy

Paste

Import
Validation
Create Submodel
Enable write

Compare Analysis Results
CHESS

Delete
F2

Ctri+Z
Ctrl+Y

Ctri+X
Ctri+C
Ctrl+V

|

Build Instances
']

Figure 17 CHESS Build Instances command for Sw System

19



CHESS Toolset User Guide

Iz Project Explorer %: Model Explorer £2

4 B3 «CHESS» protectedOperationModel
3 «RequirementView» modelRequirementView
B3 «SystemView» modelSystemView

B3 «ComponentView» modelComponentView

S

E3 «DeploymentView» modelDeploymentView

4 B3 HwType
] «CH_HwProcessor, GaExecHost, StatefulHardware» CPUO
%] «CH_HwProcessor, GaExecHost, StatefulHardware» CPUQ_Sing|

Ba Diagram HwTypes

4 B3 System

%] «CHGaResourcePlatforms» System 35
E3 «CHGaResourcePlatform» System
%] «CHGaResourcePlatforms Single(

ExEwEReE =0

Code generation

Create validation plugin for this DSML
Tracing

Java

Utils

B3 Diagram HwPackage
4B lysisView» modelAnalysisView
4 3 «RTAnalysisView» modelRTAnalysis\
E «SaAnalysisContext» SchedAnaly<
B3 «PSMView» modelPSMView
B2 «EPackage, Mode

Moka

Qompass Designer

Open a CDT Editor

Export

New Child

New Diagram

New Table

Convert Old Table to New Table

Convert All Old Tables to New Tables

Delete Delete

AGE)

UML Primitive T)|

G

£ x

Rename F2

Redo Ctri+Y
Cut Ctrl+X

Copy Ctrl+C
Paste Ctri+V

B &

|
|
) Undo ctri+z |
|

Import »
Validation »
Create Submodel

Enable write

# <[

Compare Analysis Results i

E CHESS » Build Instances

Figure 18 CHESS Build Instances command for HW System

then the InstanceSpecifications/Slots are generated in a dedicated package which is created in the model at
the same level of the selected root entity.

The Next figure shows the instances generated; in particular see the SwSystem_instSpec package in the
Model Explorer. It is possible to see the instance related to the SwSystem entity and the instances related
to the owned Properties (i.e. the ones named SwSystem_Producer_inst, SwSystem_Consumer_inst and
SwSystem_Store_inst); the unnamed instances are the ones related to the designed connectors.

20



CHESS Toolset User Guide

& UML/SysML - ProtectedOperationSample /Models [ protectedOperationModel.di - Eclipse Platform =101
File Edit ~JDiagram Mavigate Search Papyrus Project Scripts SmartQVT CHESS Window Help
ti- @ BhLABEHles b SRE e i | O I N O P T T ¢
|- |3- B f-B-B-o- |- |59 | @8] -3 -0 &0 & UML/SysML
(r[\“_', Project Explorer 23 = t’g} == E] #% *protectedOperationModel.di 52 =0
|
B Model Explorer &3 ﬁ L= <§> = =0 w;z;nfso;?nnt» _IS
-2 «CHESS» protectedOperationModel Structure
E3 sRequirementView= modelRequirementyiew
[0 «SystemViews modelSystemView -
=-E3 «ComponentView: modelComponentView £Hﬂspedﬁc§:nit5|;eaﬁcatmn» L «cHRtSpedfications
E-C0 DataTypes context=Produce «czquﬁiuﬁmh;n» T
#-F3 Interface occKind=periodic{period={value=125.0 unit=ms}) o ter::ﬁ—sgora |;{n;|\nn rarrival={vaut
B3 Types protection=sequential F;"?_ (I)n—_guar = -
1l Dl=(value=125.0,unit=ms) Dl=(value=125.0,unit=ms)
F-C7 Implementation context=Consume

E-E3 swSystem
-5 ] «CHGaResourcePlatforms SwSystem
E-E3 «CHGaResourcePlatforms Swiystem_instSpec
: SwSystem
= swSystem_Producer_inst
[E SwSystem_Consumer_inst
[ SwSystem_Store_inst
= unnamed
5
o)

H Producer _inst : Producer_imp)

+ Qonsumer_IF_RI

!

\

=]

«propagation:

FC@Rsumer_in

Store_IF_RI + Consurig

! [+
[ unnamed
;"-'g Diagram SwSystem

unnamed + Store_T

spropagations «propagation:

¥l Diagram Package Diagram aHRtSpedficatons L ) e «cHRtSpec

#-C3 «Deploymentview» modelDeploymentview «CHRtSpedification» | . e = Store_inst @ StorgJimpl T «CHR: Speci

F-E0 «Analysisviews modelanalysisview protection=guarded |- Heie protection=
(-5 Additional Resources context=5tore context=Fl—"

-

13

+ Stere TE BT

4]
|h Produce_ICB |h Consume_ICB SwSystem_CSD 23 System_CsD Store_impl Consumer_impl| )
(E Properties [0 Problems] =] Cnn‘snle] & Error Logw = E =EYT EIW

Producer_impl

=

Figure 19: Instances specifications

9 Model validation
Model validation is supported by the CHESS toolset to enforce the methodology constraints.

9.1 Validate Core Constraints

In order to perform model validation starting from a selected entity and all its owned ones, from the
Papyrus Model Explorer select the Model or the entity on which the validation must be performed, right
click and choose:

e Validation-> CHESS->Validate core constraints->: performs checks to enforce the CHESS

methodology constraints (including specific preconditions as required by the schedulability
analysis).

9.2 Configuring the CHESS model validation features

It is possible to configure which model validation features are enabled in CHESS by selecting from the
Eclipse commands bar “Window”->"Preferences”->"Model Validation”->"Constraints”->"CHESS Model
Constraints”, and finally selecting the constraints to be enabled.

21



CHESS Toolset User Guide

10 Model-based Analysis

10.1 The Analysis Context

CHESS uses and extend the support given by MARTE for the specification of the analysis context; the
analysis context is a modelling construct which allows to specify all the input needed to run a given analysis
and in particular it stores the reference to the entities of the design to be considered for the given analysis.

In CHESS the entities of the design which can be subject of the analysis are SW and/or HW components
instances, together with their declared behaviour (if provided), relationships and allocations.

Basically CHESS uses the MARTE SaAnalysisContext and introduces specializations of the MARTE
GaAnalysisContext (e.g. StateBasedAnalysis, FailurePropagationAnalysis) construct to allow the
specification of the input needed to run the analysis. In CHESS the set of instances subject of the given
analysis must be grouped under packages stereotyped as CHGaResourcePlatform (automatically built using
the BuildInstance command). CHGaResourcePlatform extends the MARTE GarResourcePlatform stereotype,
in fact the latter cannot be used to group resource instances.

Currently, the following analysis context can be created in the AnalysisView (or in its sub-views):

e SaAnalysisContext : needed to run schedulability and end-to-end response time analysis,

e StateBasedAnalysis (under DendabilityAnalysisView): needed to run state based analysis

e FailurePropagationAnalysis (under DendabilityAnalysisView): needed to run failure propagation
analysis (FPTC and FI4FA).

More information about the aforementioned analysis is provided in the following sections.

For each analysis context a link to the relevant CHGaResourcePlatforms to be considered in the analysis
must be set through the platform attribute: the SW platform instance specification and the HW
Deployment platform instance specification must both be specified.

Different analysis contexts can be defined and saved in the CHESS model, allowing to perform real time
analysis on different deployment configurations and then to compare the analysis results, as described in
the following.

10.2 Timing Analysis
The following timing analysis are supported via integration with the MAST analysis tool at software
component development level:

e Schedulability Analysis
e End2End Response Time Analysis

See the “CHESS software development guide” for a detailed timing analysis guide.

10.3 Dependability Analysis

The following dependability analyses are supported:
e State-based quantitative analysis (see the “CHESS dependability guide”)

22



CHESS Toolset User Guide

e Failure Logic Analysis (FLA) based upon FPTC - Fault Propagation and Transformation Calculus, to
perform qualitative failure propagation analysis (see the “CHESS dependability guide”).

e FI4FA - Formalism for Incompletion, Inconsistency, Interference and Impermanence Failures (see
the “CHESS dependability guide”).

e Model-based safety analysis, including fault injection, fault trees and FMEA tables generation (see
the “CHESS guide for contract-based analysis, model checking, and safety analysis”)

10.4 Contract-based analysis
The following contract-based analyses are supported (see the “CHESS guide for contract-based analysis,
model checking, and safety analysis”):

e Contract refinement verification

e Contract-based compositional verification of state machines
e Contracts validation

e Contract-based safety analysis

10.5 Analysis of Reliability using SAN Models
CHESS supports modelling of safety and security concerns and automated transformations to SAN models
for reliability analysis with the MOBIUS tool. See the “CHESS-MOBIUS Integration Guide” for details.

11 Architectural Patterns

The CHESS tool includes a library of design patterns to be instantiated in a model. It is also possible to
create new patterns and so different libraries.

See the “CHESS Architectural Patterns Guide” for details.

12 Ada infrastructural code generation
CHESS allows Ada code generation starting from the ComponentView.

For details see http://chess-project.org/page/training.

13 Runtime Monitoring
The CHESS tool includes trace analysis and back propagation support.

For details see the “CHESS Runtime Monitoring Guide”.

14 References
[1] B. Gallina and Z. Haider, A. Carlsson, S. Mazzini S. Puri, “Multi - concern Dependability - centered

Assurance for Space Systems via ConcertoFLA” , International Conference on Reliable Software
Technologies- Ada-Europe 2018, Lisbon, June 2018

[2] Mazzini S., Puri S., A. Russino, “Fitting the CHESS approach to the AUTOSAR development flow”, Ada
User Journal, Vol. 37, Number 3, September 2016.

23


http://chess-project.org/page/training

CHESS Toolset User Guide

[3] Mazzini S., Favaro J., L. Baracchi, “A model-based approach for the development of critical space
systems”, 2015 IEEE Intelligent Transportation Systems Conference (ITSC 2015), 3rd IEEE International
Workshop on Metrology for Aerospace Conference, Florence, June 2016.

[4] Mazzini S., J. Favaro, S. Puri, L. Baracchi., “CHESS: an open source methodology and toolset for the
development of critical systems”, 2nd International Workshop on Open Source Software for Model
Driven Engineering (OSS4MDE), Saint-Malo, October 2016

[5] L.Baracchi, S.Mazzini, S.Puri, T.Vardanega: “Lessons Learned in a Journey Toward Correct-by-
Construction Model-Based Development”, Reliable Software Technologies — Ada-Europe 2016 Volume
9695 of the series Lecture Notes in Computer Science pp 113-128, 31 May 2016

[6] Sljivo 1., Gallina B., Carlson J., Hansson H., Puri S., 2016. A Method to Generate Reusable Safety Case
Argument-Fragments from Compositional Safety Analysis. Journal of Systems and Software: Special
Issue on Software Reuse, 131, pp. 570-590

[7] CONCERTO, «D2.8 — Multi-concern Component Methodology and Toolset — Final Version,»
www.concerto-project.org/, 2015.

[8] Andrea Baldovin - Alessandro Zovi - Geoffrey Nelissen - Stefano Puri: “ The CONCERTO Methodology for
Model-Based Development of Avionics Software”, 20th International Conference on Reliable Software
Technologies - Ada-Europe 2015; 06/2015

[9] Sljivo 1., Gallina B., Carlson J., Hansson H., Puri S.: “A Method to Generate Reusable Safety Case
Fragments from Compositional Safety Analysis”, 14th International Conference on Software Reuse, 4-6
January 2015.

[10] Baracchi L., Cimatti A., Garcia G., Mazzini S., Puri S., Tonetta S., “Requirements refinement and
component reuse: the FoReVer contract-based approach”, in Bagnato A., Quadri I. R., Rossi M.,
Indrusiak I. S., Editors “Industry and Research Perspectives on Embedded System Design”, |Gl Global,
2014.

[11] Cicchetti A., Ciccozzi F., Mazzini S., Puri S., Panunzio M., Zovi A., “CHESS: a Model-Driven Engineering
Tool Environment for Aiding the Development of Complex Industrial Systems”, ASE2012, September 3-
7, 2012, Essen, Germany

[12] Mazzini S., Puri S., Veran G., Vardanega T., Panunzio M., Santamaria C., Zovi A., “Model-Driven and
Component-Based Engineering with the CHESS Methodology”, DASIA 2011 - Malta, 19 May 2011

[13] Cicchetti A., Ciccozzi F., Mazzini S., Puri S., Panunzio M.,Zovi A., Vardanega T.,“ New Ideas and
Emerging Results Track: Tackling Industrial Challenges in Model-Driven Engineering of Complex
Systems”, Proc. of International Conference on Software Engineering (ICSE), Honolulu, May 2011.

24



